两个周期信号之和、乘积是否是周期信号的讨论

        最近也遇到两个周期信号相加或者相乘的问题,被别人问到时,总感觉不能清晰地给出解释,于是到处搜索得到一些个人见解,仅止于个人见解!

    一,两个周期信号之和

        结论:当且仅当两个周期信号的周期之比为有理数时,相加之和才为周期信号,且和信号周期为两信号周期的最小公倍数。    

         解释:从时域看,f(t)周期为T, g(t)周期为T', 则只有当T*T'既为T的整数倍又为T'的整数倍是,f(t)+g(t)才为周期,且T*T'为其周期的整数倍,也即两信号周期之比为有理数。否则无法找到一个数同时既为f(t)的周期又为g(t)的周期,也就找不到一个数为f(t)+g(t)的周期,也即一个数为f(t)的周期整数倍时,就是g(t)周期的非整数倍。
    从频域看,周期信号的傅里叶变换为对信号一个周期频谱包络的等间隔的抽样冲激,而频域抽样间隔=2π / 时域周期,两周期信号之和的频谱为各自抽样冲激序列的叠加。若两信号周期之比不为有理数时,抽样间隔之比也不为有理数,频域叠加后的抽样冲激间隔将不相等,甚至随频率变化,所以这时时域就肯定不为周期信号了。

        举例:sin(x)+sin(πx),周期之比不是有理数,之和不是周期信号!

   二,两个周期信号之积 

       结论:周期信号相乘一定是周期信号。

        解释:周期信号可以展开成傅立叶级数,即用正弦函数表示,正弦函数的乘积可以用积化和差公式化为正弦函数,因此两个傅立叶级数的乘积一定是周期的,即两个周期信号的乘积一定是周期信号。 

        部分内容摘自网络!

    

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页